On the real entropy of quadratic rational maps

Khashayar Filom

Northwestern University

Illustrating Probability and Dynamics, ICERM, November 2019

1 An Overview
■ Entropy in Families of Polynomial Interval Maps

- Transitioning from Polynomials to Rational Maps

2 The Entropy Function on the Moduli of Real Rational Maps

- The Moduli Space $\mathcal{M}_{d}(\mathbb{C})$

■ The Entropy Function $h_{\mathbb{R}}: \mathcal{M}_{d}^{\prime}-\mathcal{S}^{\prime} \rightarrow[0, \log (d)]$

3 The Moduli of Real Quadratic Rational Maps

- The Degree Zero Component of the Domain of $h_{\mathbb{R}}$
- Entropy Plots

4 A Monotonicity Result

5 A Non-Monotonicity Result

Entropy of Multimodal Interval or Circle Maps

Entropy of Multimodal Interval or Circle Maps

Consider a continuous multimodal self-map of a compact interval or a circle.

$$
f: I \circlearrowleft \quad f: S^{1}
$$

Fact (Misiurewicz-Szlenk 1980)

The topological entropy is the growth rate of the lap number (the number of monotonic pieces) of iterates.

$$
h_{\mathrm{top}}(f)=\lim _{n \rightarrow \infty} \frac{1}{n} \log \left(I\left(f^{\circ n}\right)\right)=\inf _{n} \frac{1}{n} \log \left(I\left(f^{\circ n}\right)\right) .
$$

$l(f)=2$

$l\left(f^{\circ 2}\right)=4$

$l\left(f^{\circ 3}\right)=6$

The Motivating Question

How the topological entropy varies in a family of interval or circle maps?

The Motivating Question

How the topological entropy varies in a family of interval or circle maps?

- Consider the Logistic Family:

$$
\left\{\begin{array}{l}
f_{a}:[0,1] \rightarrow[0,1] \\
x \mapsto a x(1-x)
\end{array} \quad(a \in[0,4])\right.
$$

The Motivating Question

How the topological entropy varies in a family of interval or circle maps?

- Consider the Logistic Family:

$$
\left\{\begin{array}{l}
f_{a}:[0,1] \rightarrow[0,1] \\
x \mapsto a x(1-x)
\end{array} \quad(a \in[0,4])\right.
$$

- The bifurcation diagram

Two Important Properties

We observe that the function $a \mapsto h_{\text {iop }}\left(f_{\mathrm{a}}\right)$ is a Devil's Staircase:

Two Important Properties

We observe that the function $a \mapsto h_{\text {top }}\left(f_{a}\right)$ is a Devil's Staircase:

- It is increasing.
- It is not strictly increasing over any open subinterval.

Two Important Properties

We observe that the function $a \mapsto h_{\text {top }}\left(f_{a}\right)$ is a Devil's Staircase:

- It is increasing.

The Monotonicity of Entropy for the Quadratic Family
[Milnor-Thurston 1988, Douady-Hubbard-Sullivan]

■ It is not strictly increasing over any open subinterval.
The Density of Hyperbolicity for the Quadratic Family [Lyubich 1997, Graczyk-Świa̧tek 1997]

What About Higher Degrees?

■ The meaning of "monotonicity" when the entropy function is multivariate?

What About Higher Degrees?

- The meaning of "monotonicity" when the entropy function is multivariate? Answer: The connectedness of level sets (the isentropes).

What About Higher Degrees?

■ The meaning of "monotonicity" when the entropy function is multivariate? Answer: The connectedness of level sets (the isentropes).

Monotonicity of Entropy Conjecture (Milnor 1992)

For any $d \geq 2$ the entropy function is monotonic on the parameter space of degree d "polynomial maps" of the interval.

What About Higher Degrees?

■ The meaning of "monotonicity" when the entropy function is multivariate? Answer: The connectedness of level sets (the isentropes).

Monotonicity of Entropy Conjecture (Milnor 1992)

For any $d \geq 2$ the entropy function is monotonic on the parameter space of degree d "polynomial maps" of the interval.
\square Here we deal with the class of maps $f:[0,1] \circlearrowleft$ s.t.

- the map is boundary-anchored $f(\{0,1\}) \subseteq\{0,1\}$ with a fixed orientation;
- f is a degree d polynomial with $d-1$ distinct critical points in $(0,1)$.

What About Higher Degrees?

■ The meaning of "monotonicity" when the entropy function is multivariate? Answer: The connectedness of level sets (the isentropes).

Monotonicity of Entropy Conjecture (Milnor 1992)

For any $d \geq 2$ the entropy function is monotonic on the parameter space of degree d "polynomial maps" of the interval.
\square Here we deal with the class of maps $f:[0,1] \circlearrowleft$ s.t.

- the map is boundary-anchored $f(\{0,1\}) \subseteq\{0,1\}$ with a fixed orientation;
- f is a degree d polynomial with $d-1$ distinct critical points in $(0,1)$.
- Critical values then yield an easy description of the parameter space as an open subset of $(0,1)^{d-1}$.

What About Higher Degrees?

■ The meaning of "monotonicity" when the entropy function is multivariate? Answer: The connectedness of level sets (the isentropes).

Monotonicity of Entropy Conjecture (Milnor 1992)

For any $d \geq 2$ the entropy function is monotonic on the parameter space of degree d "polynomial maps" of the interval.
\square Here we deal with the class of maps $f:[0,1] \circlearrowleft$ s.t.

- the map is boundary-anchored $f(\{0,1\}) \subseteq\{0,1\}$ with a fixed orientation;
- f is a degree d polynomial with $d-1$ distinct critical points in $(0,1)$.
- Critical values then yield an easy description of the parameter space as an open subset of $(0,1)^{d-1}$.

Theorem (Bruin-van Strien 2009)

Milnor's conjecture holds for the aforementioned family of polynomial maps.

The entropy behavior of real quadratic rational maps

The Main Result

The entropy function on the moduli space of real quadratic rational maps is not monotonic, but its restriction to certain dynamically defined regions is monotonic.

The entropy behavior of real quadratic rational maps

The Main Result

The entropy function on the moduli space of real quadratic rational maps is not monotonic, but its restriction to certain dynamically defined regions is monotonic.

- Things that should be addressed before the proof:

The entropy behavior of real quadratic rational maps

The Main Result

The entropy function on the moduli space of real quadratic rational maps is not monotonic, but its restriction to certain dynamically defined regions is monotonic.

■ Things that should be addressed before the proof:

- the "real entropy" of rational maps;

The entropy behavior of real quadratic rational maps

The Main Result

The entropy function on the moduli space of real quadratic rational maps is not monotonic, but its restriction to certain dynamically defined regions is monotonic.

- Things that should be addressed before the proof:
- the "real entropy" of rational maps;
- "real entropy function" defined on a "moduli space" of real rational maps;

The entropy behavior of real quadratic rational maps

The Main Result

The entropy function on the moduli space of real quadratic rational maps is not monotonic, but its restriction to certain dynamically defined regions is monotonic.

- Things that should be addressed before the proof:
- the "real entropy" of rational maps;
- "real entropy function" defined on a "moduli space" of real rational maps;
- the structure of the moduli space of quadratic rational maps;

The entropy behavior of real quadratic rational maps

The Main Result

The entropy function on the moduli space of real quadratic rational maps is not monotonic, but its restriction to certain dynamically defined regions is monotonic.

- Things that should be addressed before the proof:
- the "real entropy" of rational maps;
- "real entropy function" defined on a "moduli space" of real rational maps;
- the structure of the moduli space of quadratic rational maps;
- the experimental evidence on which this result is based.

1 An Overview

- Entropy in Families of Polynomial Interval Maps
- Transitioning from Polynomials to Rational Maps

2 The Entropy Function on the Moduli of Real Rational Maps

- The Moduli Space $\mathcal{M}_{d}(\mathbb{C})$

■ The Entropy Function $h_{\mathbb{R}}: \mathcal{M}_{d}^{\prime}-\mathcal{S}^{\prime} \rightarrow[0, \log (d)]$

3 The Moduli of Real Quadratic Rational Maps

- The Degree Zero Component of the Domain of $h_{\mathbb{R}}$
- Entropy Plots

4 A Monotonicity Result

5 A Non-Monotonicity Result

The Topological Entropy of a Rational Map

Can similar questions about isentropes be formulated in the much broader context of families of rational maps?

The Topological Entropy of a Rational Map

Can similar questions about isentropes be formulated in the much broader context of families of rational maps?

Fact (Lyubich 1981)
The topological entropy of rational map $f: \widehat{\mathbb{C}} \circlearrowleft$ of degree $d \geq 2$ is $\log (d)$.

The Topological Entropy of a Rational Map

Can similar questions about isentropes be formulated in the much broader context of families of rational maps?

Fact (Lyubich 1981)

The topological entropy of rational map $f: \widehat{\mathbb{C}} \circlearrowleft$ of degree $d \geq 2$ is $\log (d)$.
So we need to focus on the entropy of a subsystem: We consider rational maps with real coefficients:
$f \in \mathbb{C}(z)$ with real coefficients $\Leftrightarrow f \in \mathbb{C}(z)$ keeps $\hat{\mathbb{R}}:=\mathbb{R} \cup\{\infty\}$ invariant.

The Topological Entropy of a Rational Map

Can similar questions about isentropes be formulated in the much broader context of families of rational maps?

Fact (Lyubich 1981)

The topological entropy of rational map $f: \widehat{\mathbb{C}} \circlearrowleft$ of degree $d \geq 2$ is $\log (d)$.
So we need to focus on the entropy of a subsystem: We consider rational maps with real coefficients:
$f \in \mathbb{C}(z)$ with real coefficients $\Leftrightarrow f \in \mathbb{C}(z)$ keeps $\hat{\mathbb{R}}:=\mathbb{R} \cup\{\infty\}$ invariant.

Definition

The Real Entropy of $f \in \mathbb{R}(z)$ is defined as:

$$
h_{\mathbb{R}}(f):=h_{\mathrm{top}}\left(f \upharpoonright_{\hat{\mathbb{R}}}: \hat{\mathbb{R}} \rightarrow \hat{\mathbb{R}}\right) \in[0, \log (\operatorname{deg} f)]
$$

Subtleties Compared to the Polynomial Case

Subtleties Compared to the Polynomial Case

Question

What can be said about the level sets of the function $h_{\mathbb{R}}$ on the "space" of real rational maps of degree d ?

Subtleties Compared to the Polynomial Case

Question

What can be said about the level sets of the function $h_{\mathbb{R}}$ on the "space" of real rational maps of degree d ?

1 Rather than boundary-anchored interval maps one has to deal with circle maps $f \upharpoonright_{\hat{\mathbb{R}}}: \hat{\mathbb{R}} \circlearrowleft$.

Subtleties Compared to the Polynomial Case

Question

What can be said about the level sets of the function $h_{\mathbb{R}}$ on the "space" of real rational maps of degree d ?

1 Rather than boundary-anchored interval maps one has to deal with circle maps $f \upharpoonright_{\hat{\mathbb{R}}}: \widehat{\mathbb{R}} \circlearrowleft$.
2 This context is far more general: The maps $f \Gamma_{\hat{\mathbb{R}}}: \hat{\mathbb{R}} \circlearrowleft$ come with various lap numbers and topological degrees.

Subtleties Compared to the Polynomial Case

Question

What can be said about the level sets of the function $h_{\mathbb{R}}$ on the "space" of real rational maps of degree d ?

1 Rather than boundary-anchored interval maps one has to deal with circle maps $f \upharpoonright_{\hat{\mathbb{R}}}: \hat{\mathbb{R}} \circlearrowleft$.
2 This context is far more general: The maps $f \Gamma_{\hat{\mathbb{R}}}: \hat{\mathbb{R}} \circlearrowleft$ come with various lap numbers and topological degrees.
3 How should we parametrize real rational maps of degree d ?

1 An Overview

- Entropy in Families of Polynomial Interval Maps
- Transitioning from Polynomials to Rational Maps

2 The Entropy Function on the Moduli of Real Rational Maps - The Moduli Space $\mathcal{M}_{d}(\mathbb{C})$

- The Entropy Function $h_{\mathbb{R}}: \mathcal{M}_{d}^{\prime}-S^{\prime} \rightarrow[0, \log (d)]$

3 The Moduli of Real Quadratic Rational Maps

- The Degree Zero Component of the Domain of $h_{\mathbb{R}}$
- Entropy Plots

4 A Monotonicity Result

5 A Non-Monotonicity Result

The Moduli Space of Degree d Rational Maps

- The Moduli Space of rational maps of degree $d \geq 2$ is a complex variety of dimension $2 d-2$:

The "space" of Möbius conjugacy classes

$$
\begin{aligned}
\mathcal{M}_{d}(\mathbb{C}) & :=\operatorname{Rat}_{d}(\mathbb{C}) / \mathrm{PSL}_{2}(\mathbb{C}) \\
& =\frac{\{f \in \mathbb{C}(z) \text { rational of degree } d\}}{f \sim \alpha \circ f \circ \alpha^{-1}}\left(\alpha \in \operatorname{PSL}_{2}(\mathbb{C})\right)
\end{aligned}
$$

The Moduli Space of Degree d Rational Maps

- The Moduli Space of rational maps of degree $d \geq 2$ is a complex variety of dimension $2 d-2$:

$$
\begin{aligned}
& \text { The "space" of Möbius conjugacy classes } \\
& \begin{aligned}
\mathcal{M}_{d}(\mathbb{C}) & :=\operatorname{Rat}_{d}(\mathbb{C}) / \mathrm{PSL}_{2}(\mathbb{C}) \\
& =\frac{\{f \in \mathbb{C}(z) \text { rational of degree } d\}}{f \sim \alpha \circ f \circ \alpha^{-1}}\left(\alpha \in \operatorname{PSL}_{2}(\mathbb{C})\right)
\end{aligned}
\end{aligned}
$$

■ We consider the complex conjugacy classes of real maps:
The subspace of Möbius conjugacy classes of real maps

$$
\begin{gathered}
\mathcal{M}_{d}^{\prime}:=\mathrm{PSL}_{2}(\mathbb{C}) \cdot\left(\operatorname{Rat}_{d}(\mathbb{R})\right) / \mathrm{PSL}_{2}(\mathbb{C}) \\
\mathcal{M}_{d}^{\prime} \subset \mathcal{M}_{d}(\mathbb{C})
\end{gathered}
$$

Main Example: The Moduli Space \mathcal{M}_{2}

- The moduli space of quadratic rational maps can be identified with the plane \mathbb{C}^{2} [Milnor 1993] via

$$
\langle f\rangle \mapsto\left(\sigma_{1}=\lambda_{1}+\lambda_{2}+\lambda_{3}, \sigma_{2}=\lambda_{1} \lambda_{2}+\lambda_{2} \lambda_{3}+\lambda_{3} \lambda_{1}\right) ;
$$

Main Example: The Moduli Space \mathcal{M}_{2}

■ The moduli space of quadratic rational maps can be identified with the plane \mathbb{C}^{2} [Milnor 1993] via

$$
\langle f\rangle \mapsto\left(\sigma_{1}=\lambda_{1}+\lambda_{2}+\lambda_{3}, \sigma_{2}=\lambda_{1} \lambda_{2}+\lambda_{2} \lambda_{3}+\lambda_{3} \lambda_{1}\right) ;
$$

where
$\lambda_{1}, \lambda_{2}, \lambda_{3}$: the multipliers of fixed points (Möbius invariants)
satisfy the fixed point formula: $\frac{1}{1-\lambda_{1}}+\frac{1}{1-\lambda_{2}}+\frac{1}{1-\lambda_{3}}=1$.

Main Example: The Moduli Space \mathcal{M}_{2}

■ The moduli space of quadratic rational maps can be identified with the plane \mathbb{C}^{2} [Milnor 1993] via

$$
\langle f\rangle \mapsto\left(\sigma_{1}=\lambda_{1}+\lambda_{2}+\lambda_{3}, \sigma_{2}=\lambda_{1} \lambda_{2}+\lambda_{2} \lambda_{3}+\lambda_{3} \lambda_{1}\right) ;
$$

where
$\lambda_{1}, \lambda_{2}, \lambda_{3}$: the multipliers of fixed points (Möbius invariants)
satisfy the fixed point formula: $\frac{1}{1-\lambda_{1}}+\frac{1}{1-\lambda_{2}}+\frac{1}{1-\lambda_{3}}=1$.

- $\mathcal{M}_{2}^{\prime} \cong \mathbb{R}^{2}$ is the underlying real $\left(\sigma_{1}, \sigma_{2}\right)$-plane.

1 An Overview

- Entropy in Families of Polynomial Interval Maps
- Transitioning from Polynomials to Rational Maps

2 The Entropy Function on the Moduli of Real Rational Maps

- The Moduli Space $\mathcal{M}_{d}(\mathbb{C})$

■ The Entropy Function $h_{\mathbb{R}}: \mathcal{M}_{d}^{\prime}-\mathcal{S}^{\prime} \rightarrow[0, \log (d)]$

3 The Moduli of Real Quadratic Rational Maps

- The Degree Zero Component of the Domain of $h_{\mathbb{R}}$
- Entropy Plots

4 A Monotonicity Result

5 A Non-Monotonicity Result

$h_{\mathbb{R}}$ as a Function on \mathcal{M}_{d}^{\prime} ?!

$h_{\mathbb{R}}$ as a Function on \mathcal{M}_{d}^{\prime} ?!
First Attempt

$$
\langle f\rangle \mapsto h_{\mathbb{R}}(f)=h_{\mathrm{top}}\left(f \upharpoonright_{\hat{\mathbb{R}}}: \hat{\mathbb{R}} \rightarrow \hat{\mathbb{R}}\right)
$$

$h_{\mathbb{R}}$ as a Function on \mathcal{M}_{d}^{\prime} ?!
First Attempt

$$
\langle f\rangle \mapsto h_{\mathbb{R}}(f)=h_{\mathrm{top}}\left(f \upharpoonright_{\hat{\mathbb{R}}}: \hat{\mathbb{R}} \rightarrow \hat{\mathbb{R}}\right)
$$

not well defined!

There might be representatives conjugate only by elements of $\operatorname{PSL}_{2}(\mathbb{C})=\operatorname{PGL}_{2}(\mathbb{C})$, not by elements of $\operatorname{PGL}_{2}(\mathbb{R})$.
$h_{\mathbb{R}}$ as a Function on \mathcal{M}_{d}^{\prime} ?!
First Attempt

$$
\langle f\rangle \mapsto h_{\mathbb{R}}(f)=h_{\mathrm{top}}\left(f \upharpoonright_{\hat{\mathbb{R}}}: \hat{\mathbb{R}} \rightarrow \hat{\mathbb{R}}\right)
$$

not well defined!
There might be representatives conjugate only by elements of $\operatorname{PSL}_{2}(\mathbb{C})=\operatorname{PGL}_{2}(\mathbb{C})$, not by elements of $\mathrm{PGL}_{2}(\mathbb{R})$.

Example

Maps $z \mapsto \frac{1}{\mu}\left(z \pm \frac{1}{z}\right)(\mu \in \mathbb{R}-\{0\})$ are conjugate over \mathbb{C}

$$
\frac{1}{\mathrm{i}} \cdot \frac{1}{\mu}\left(\mathrm{i} z+\frac{1}{\mathrm{i} z}\right)=\frac{1}{\mu}\left(z-\frac{1}{z}\right)
$$

but restricted to $\hat{\mathbb{R}}=\mathbb{R} \cup\{\infty\}$:
$\square x \mapsto \frac{1}{\mu}\left(x-\frac{1}{x}\right)$ is a two-sheeted covering and of entropy $\log (2)$;
■ $x \mapsto \frac{1}{\mu}\left(x+\frac{1}{x}\right)$ is of entropy zero.

Excluding Symmetries

This issue of real rational maps that are conjugate only over complex numbers can happen only in presence of Möbius symmetries; e.g.

$$
-\frac{1}{\mu}\left(z+\frac{1}{z}\right)=\frac{1}{\mu}\left((-z)+\frac{1}{-z}\right) .
$$

Excluding Symmetries

This issue of real rational maps that are conjugate only over complex numbers can happen only in presence of Möbius symmetries; e.g.

$$
-\frac{1}{\mu}\left(z+\frac{1}{z}\right)=\frac{1}{\mu}\left((-z)+\frac{1}{-z}\right) .
$$

So we have to exclude the symmetry locus

$$
\mathcal{S}^{\prime}:=\left\{\langle f\rangle \in \mathcal{M}_{d}(\mathbb{C}) \mid f \in \operatorname{Rat}_{d}(\mathbb{R}), \operatorname{Aut}(f) \neq\{1\}\right\} \subset \mathcal{M}_{d}^{\prime}
$$

in order to have a well defined real entropy function.

The Real Entropy Function $h_{\mathbb{R}}$

Proposition (F. 2018)

For any $d \geq 2$:
$\square \mathcal{M}_{d}^{\prime}-\mathcal{S}^{\prime}$ is an irreducible real variety of dimension $2 d-2$.

- The function

$$
\left\{\begin{array}{l}
h_{\mathbb{R}}: \mathcal{M}_{d}^{\prime}-\mathcal{S}^{\prime} \rightarrow[0, \log (d)] \\
\langle f\rangle \mapsto h_{\mathrm{top}}\left(f \upharpoonright_{\hat{\mathbb{R}}}: \hat{\mathbb{R}} \rightarrow \hat{\mathbb{R}}\right)
\end{array} \quad(f \in \mathbb{R}(z))\right.
$$

is surjective and continuous (in the analytic topology).

- The domain is disconnected with components (each of the same real dimension $2 d-2$) corresponding to possible topological degrees of the restriction $f \upharpoonright_{\hat{\mathbb{R}}}: \widehat{\mathbb{R}} \rightarrow \hat{\mathbb{R}}$.

The Real Entropy Function $h_{\mathbb{R}}$

Proposition (F. 2018)

For any $d \geq 2$:
$\square \mathcal{M}_{d}^{\prime}-\mathcal{S}^{\prime}$ is an irreducible real variety of dimension $2 d-2$.

- The function

$$
\left\{\begin{array}{l}
h_{\mathbb{R}}: \mathcal{M}_{d}^{\prime}-\mathcal{S}^{\prime} \rightarrow[0, \log (d)] \\
\langle f\rangle \mapsto h_{\mathrm{top}}\left(f \upharpoonright_{\hat{\mathbb{R}}}: \hat{\mathbb{R}} \rightarrow \hat{\mathbb{R}}\right)
\end{array} \quad(f \in \mathbb{R}(z))\right.
$$

is surjective and continuous (in the analytic topology).

- The domain is disconnected with components (each of the same real dimension $2 d-2$) corresponding to possible topological degrees of the restriction $f \upharpoonright_{\hat{\mathbb{R}}}: \hat{\mathbb{R}} \rightarrow \hat{\mathbb{R}}$.

The Monotonicity Question

Restricted to connected components of the domain, are the level sets of $h_{\mathbb{R}}$ connected?

Back to the Main Example: $\mathcal{M}_{2}^{\prime}-\mathcal{S}^{\prime}$ has three connected components.

$$
\mathcal{S}^{\prime}=\left\{\left.\left\langle\frac{1}{\mu}\left(z+\frac{1}{z}\right)\right\rangle=\left\langle\frac{1}{\mu}\left(z-\frac{1}{z}\right)\right\rangle \right\rvert\, \mu \in \mathbb{R}-\{0\}\right\} \text { a cubic curve in } \mathcal{M}_{2}^{\prime}=\mathbb{R}^{2}
$$

The topological degree of the restriction is ± 2 or zero.

1 An Overview

- Entropy in Families of Polynomial Interval Maps
- Transitioning from Polynomials to Rational Maps

2 The Entropy Function on the Moduli of Real Rational Maps

- The Moduli Space $\mathcal{M}_{d}(\mathbb{C})$
- The Entropy Function $h_{\mathbb{R}}: \mathcal{M}_{d}^{\prime}-\mathcal{S}^{\prime} \rightarrow[0, \log (d)]$

3 The Moduli of Real Quadratic Rational Maps

- The Degree Zero Component of the Domain of $h_{\mathbb{R}}$
- Entropy Plots

4 A Monotonicity Result

5 A Non-Monotonicity Result

A Simple Dichotomy for Real Quadratic Maps

A Simple Dichotomy for Real Quadratic Maps

For $f \in \mathbb{R}(z)$ of degree two; either
 covering $\Rightarrow h_{\mathbb{R}}(f)=\log (2)$

- or the critical points are real; $f(\hat{\mathbb{R}}) \subsetneq \hat{\mathbb{R}} \Rightarrow$ only the interval map $f \upharpoonright_{f(\hat{\mathbb{R}})}: f(\hat{\mathbb{R}}) \rightarrow f(\hat{\mathbb{R}})$ matters dynamically.

A Simple Dichotomy for Real Quadratic Maps

For $f \in \mathbb{R}(z)$ of degree two; either
 covering $\Rightarrow h_{\mathbb{R}}(f)=\log (2)$
■ or the critical points are real; $f(\hat{\mathbb{R}}) \subsetneq \hat{\mathbb{R}} \Rightarrow$ only the interval map $f \upharpoonright_{f(\hat{\mathbb{R}})}: f(\hat{\mathbb{R}}) \rightarrow f(\hat{\mathbb{R}})$ matters dynamically.
Upshot \star Among all three connected components of $\mathcal{M}_{2}^{\prime}-\mathcal{S}^{\prime}$ only one connected component is relevant to our discussion; the component of degree zero maps.

The Component of Degree Zero Maps in $\mathcal{M}_{2}^{\prime}-\mathcal{S}^{\prime}$

The Component of Degree Zero Maps in $\mathcal{M}_{2}^{\prime}-\mathcal{S}^{\prime}$

- There is a finer partition of this component according to the orientation and modality of the interval map.

The Component of Degree Zero Maps in $\mathcal{M}_{2}^{\prime}-\mathcal{S}^{\prime}$

■ There is a finer partition of this component according to the orientation and modality of the interval map.
$\square h_{\mathbb{R}} \equiv 0$ on monotonic regions and $h_{\mathbb{R}} \equiv \log (2)$ on deg ± 2 regions.
■ Upshot \star Only the unimodal region and the two bimodal regions adjacent to it matter to the monotonicity discussion.

1 An Overview

- Entropy in Families of Polynomial Interval Maps
- Transitioning from Polynomials to Rational Maps

2 The Entropy Function on the Moduli of Real Rational Maps

- The Moduli Space $\mathcal{M}_{d}(\mathbb{C})$

■ The Entropy Function $h_{\mathbb{R}}: \mathcal{M}_{d}^{\prime}-\mathcal{S}^{\prime} \rightarrow[0, \log (d)]$

3 The Moduli of Real Quadratic Rational Maps

- The Degree Zero Component of the Domain of $h_{\mathbb{R}}$

■ Entropy Plots

4 A Monotonicity Result

5 A Non-Monotonicity Result

An Entropy Contour Plot in the Unimodal and (-+-)-Bimodal Regions

black blue magenta green cyan yellow red
$[0,0.1)[0.1,0.25)[0.25,0.4)[0.4,0.48)[0.48,0.55)[0.55,0.65)[0.65, \log (2) \approx 0.7]$

An Entropy Contour Plot in the Unimodal and (-+-)-Bimodal Regions

black blue magenta green cyan yellow red
$[0,0.1)[0.1,0.25)[0.25,0.4)[0.4,0.48)[0.48,0.55)[0.55,0.65][0.65, \log (2) \approx 0.7]$

Conjecture

Restricted to the union of adjacent unimodal and (-+-)-bimodal regions the entropy function is monotonic.

An Entropy Contour Plot in the $(+-+)$-Bimodal Region

black blue magenta green cyan yellow red
failure $[0,0.05)[0.05,0.2)[0.2,0.3)[0.3,0.5)[0.5,0.66)[0.66, \log (2) \approx 0.7]$

An Entropy Contour Plot in the $(+-+)$-Bimodal Region

black blue magenta green cyan yellow red failure $[0,0.05)[0.05,0.2)[0.2,0.3)[0.3,0.5)[0.5,0.66)[0.66, \log (2) \approx 0.7]$

Conjecture

The monotonicity fails here due to a "non-polynomial" behavior.

The Algorithms Used to Generate the Plots

- L. Block, J. Keesling, S. Li, and K. Peterson. An improved algorithm for computing topological entropy. J. Statist. Phys., 1989.
■ L. Block and J. Keesling. Computing the topological entropy of maps of the interval with three monotone pieces. J. Statist. Phys., 1992.

Going back to the moduli space

■ Summarizing the conjectures:

Going back to the moduli space

■ Summarizing the conjectures:

- An important line in the picture: $\sigma_{2}=2 \sigma_{1}-3$ - the locus where one of the fixed points becomes multiple.

1 An Overview

- Entropy in Families of Polynomial Interval Maps
- Transitioning from Polynomials to Rational Maps

2 The Entropy Function on the Moduli of Real Rational Maps
■ The Moduli Space $\mathcal{M}_{d}(\mathbb{C})$

- The Entropy Function $h_{\mathbb{R}}: \mathcal{M}_{d}^{\prime}-\mathcal{S}^{\prime} \rightarrow[0, \log (d)]$

3 The Moduli of Real Quadratic Rational Maps

- The Degree Zero Component of the Domain of h_{R}
- Entropy Plots

4 A Monotonicity Result

5 A Non-Monotonicity Result

The Statement of the Theorem

Theorem (F. 2018)

Restricted to the part of the moduli space where the critical points are real and the maps admit three real fixed points, the level sets of $h_{\mathbb{R}}$ are connected.

Proof; Step 1: An Analysis of Real Fixed Points

Proof; Step 1: An Analysis of Real Fixed Points

- If there are three real fixed points, at least one of them must be attracting:
$\left.\begin{array}{l}\lambda_{1}, \lambda_{2}, \lambda_{3} \in \mathbb{R}-\{1\} \mathrm{w} / \text { at least one of them non-negative } \\ \frac{1}{1-\lambda_{1}}+\frac{1}{1-\lambda_{2}}+\frac{1}{1-\lambda_{3}}=1\end{array}\right\} \Rightarrow \exists i$ s.t. $\left|\lambda_{i}\right|<1$.

Proof; Step 2: A Straightening Argument

Proof; Step 2: A Straightening Argument

- Douady and Hubbard's Theory of Polynomial-like Mappings : The fixed point can be made super-attracting by a quasi-conformal perturbation outside its basin.

Proof; Step 2: A Straightening Argument

■ Douady and Hubbard's Theory of Polynomial-like Mappings : The fixed point can be made super-attracting by a quasi-conformal perturbation outside its basin.

- As the fixed point is real, this can be done such that the resulting polynomial is real: The "important" part of the dynamics on $\hat{\mathbb{R}}$ comes from is induced by a real quadratic polynomial.

Proof; Step 2: A Straightening Argument

■ Douady and Hubbard's Theory of Polynomial-like Mappings : The fixed point can be made super-attracting by a quasi-conformal perturbation outside its basin.

- As the fixed point is real, this can be done such that the resulting polynomial is real: The "important" part of the dynamics on $\hat{\mathbb{R}}$ comes from is induced by a real quadratic polynomial.
- This straightening can be done through the family.

Proof; Step 2: A Straightening Argument

■ Douady and Hubbard's Theory of Polynomial-like Mappings : The fixed point can be made super-attracting by a quasi-conformal perturbation outside its basin.

- As the fixed point is real, this can be done such that the resulting polynomial is real: The "important" part of the dynamics on $\hat{\mathbb{R}}$ comes from is induced by a real quadratic polynomial.
- This straightening can be done through the family.
- The monotonicity of entropy for quadratic polynomials has been established by Milnor and Thurston.

1 An Overview

- Entropy in Families of Polynomial Interval Maps
- Transitioning from Polynomials to Rational Maps

2 The Entropy Function on the Moduli of Real Rational Maps
■ The Moduli Space $\mathcal{M}_{d}(\mathbb{C})$

- The Entropy Function $h_{\mathbb{R}}: \mathcal{M}_{d}^{\prime}-\mathcal{S}^{\prime} \rightarrow[0, \log (d)]$

3 The Moduli of Real Quadratic Rational Maps

- The Degree Zero Component of the Domain of h_{R}
- Entropy Plots

4 A Monotonicity Result

5 A Non-Monotonicity Result

An Interesting Bifurcation Behavior

The bifurcation diagram for a part of the $(+-+)$-bimodal region parametrized as $\left\{x \mapsto \frac{2 \mu x(t x+2)}{\mu^{2} x^{2}+(t x+2)^{2}}:[-1,1] \circlearrowleft\right\}_{-26<\mu<-19,-5<t<-1}$. A period-doubling bifurcation from a 5-cycle to a 10 -cycle visible as the transition from green to magenta occurs in "various" directions.

A Non-Polynomial Behavior

Theorem (F.-Pilgrim 2019)

The restriction of $h_{\mathbb{R}}$ to the $(+-+)$-bimodal region admits a continuum of disconnected level sets.

A Non-Polynomial Behavior

Theorem (F.-Pilgrim 2019)

The restriction of $h_{\mathbb{R}}$ to the (+-+)-bimodal region admits a continuum of disconnected level sets.

■ Why "non-polynomial"? Bicritical rational maps whose fixed points are all repelling are called essentially non-polynomial-like [Milnor-2000].

A Non-Polynomial Behavior

Theorem (F.-Pilgrim 2019)

The restriction of $h_{\mathbb{R}}$ to the $(+-+)$-bimodal region admits a continuum of disconnected level sets.

- Why "non-polynomial"? Bicritical rational maps whose fixed points are all repelling are called essentially non-polynomial-like [Milnor-2000].
- The main idea of the proof:

Construct a family of real hyperbolic components consisting of essentially non-polynomial quadratic rational maps in the (+-+)-region.

