#### Khashayar Filom

Northwestern University

Illustrating Probability and Dynamics, ICERM, November 2019

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

- Entropy in Families of Polynomial Interval Maps

#### 1 An Overview

- Entropy in Families of Polynomial Interval Maps
- Transitioning from Polynomials to Rational Maps
- 2 The Entropy Function on the Moduli of Real Rational Maps
  - The Moduli Space  $\mathcal{M}_d(\mathbb{C})$
  - The Entropy Function  $h_{\mathbb{R}} : \mathcal{M}'_d \mathcal{S}' \to [0, \log(d)]$

#### 3 The Moduli of Real Quadratic Rational Maps

The Degree Zero Component of the Domain of  $h_{\mathbb{R}}$ Entropy Plots

- 4 A Monotonicity Result
- 5 A Non-Monotonicity Result

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Entropy in Families of Polynomial Interval Maps

# Entropy of Multimodal Interval or Circle Maps

An Overview

Entropy in Families of Polynomial Interval Maps

#### Entropy of Multimodal Interval or Circle Maps

Consider a continuous multimodal self-map of a compact interval or a circle.

 $f: I \circlearrowleft f: S^1 \circlearrowright$ 

#### Fact (Misiurewicz-Szlenk 1980)

The topological entropy is the growth rate of the lap number (the number of monotonic pieces) of iterates.

$$h_{\text{top}}(f) = \lim_{n \to \infty} \frac{1}{n} \log \left( l(f^{\circ n}) \right) = \inf_{n} \frac{1}{n} \log \left( l(f^{\circ n}) \right)$$



э.

Entropy in Families of Polynomial Interval Maps

# The Motivating Question

How the topological entropy varies in a family of interval or circle maps?

Entropy in Families of Polynomial Interval Maps

# The Motivating Question

How the topological entropy varies in a family of interval or circle maps?

Consider the *Logistic Family*:

$$egin{cases} f_a: [0,1] o [0,1] \ x \mapsto ax(1-x) \end{cases} \quad (a \in [0,4]). \end{cases}$$

▲□▶▲□▶▲□▶▲□▶ □ のQ@

An Overview

Entropy in Families of Polynomial Interval Maps

# The Motivating Question

How the topological entropy varies in a family of interval or circle maps?

Consider the *Logistic Family*:

$$\begin{cases} f_a: [0,1] \to [0,1] \\ x \mapsto ax(1-x) \end{cases} \quad (a \in [0,4]).$$

The bifurcation diagram

The entropy as a function of a



◆□▶ ◆□▶ ◆三▶ ◆三▶ ●□ ● ●

An Overview

Entropy in Families of Polynomial Interval Maps

#### **Two Important Properties**

We observe that the function  $a \mapsto h_{top}(f_a)$  is a Devil's Staircase:



An Overview

Entropy in Families of Polynomial Interval Maps

#### **Two Important Properties**

We observe that the function  $a \mapsto h_{top}(f_a)$  is a Devil's Staircase:

It is increasing.

It is not strictly increasing over any open subinterval.

< □ > < 同 > < Ξ > < Ξ > < Ξ > < Ξ < </p>

An Overview

Entropy in Families of Polynomial Interval Maps

#### **Two Important Properties**

We observe that the function  $a \mapsto h_{top}(f_a)$  is a Devil's Staircase:

It is increasing.

The Monotonicity of Entropy for the Quadratic Family [Milnor-Thurston 1988, Douady-Hubbard-Sullivan]

It is not strictly increasing over any open subinterval.

**The Density of Hyperbolicity for the Quadratic Family** [Lyubich 1997, Graczyk-Świątek 1997]

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Entropy in Families of Polynomial Interval Maps

# What About Higher Degrees?

The meaning of "monotonicity" when the entropy function is multivariate?

An Overview

Entropy in Families of Polynomial Interval Maps

### What About Higher Degrees?

The meaning of "monotonicity" when the entropy function is multivariate? Answer: The connectedness of level sets (the *isentropes*).

▲□▶▲□▶▲□▶▲□▶ □ のQ@

Entropy in Families of Polynomial Interval Maps

### What About Higher Degrees?

The meaning of "monotonicity" when the entropy function is multivariate? Answer: The connectedness of level sets (the *isentropes*).

#### Monotonicity of Entropy Conjecture (Milnor 1992)

For any  $d \ge 2$  the entropy function is monotonic on the parameter space of degree *d* "polynomial maps" of the interval.

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

# What About Higher Degrees?

The meaning of "monotonicity" when the entropy function is multivariate? Answer: The connectedness of level sets (the *isentropes*).

#### Monotonicity of Entropy Conjecture (Milnor 1992)

For any  $d \ge 2$  the entropy function is monotonic on the parameter space of degree *d* "polynomial maps" of the interval.

- Here we deal with the class of maps  $f : [0, 1] \circlearrowleft s.t.$ 
  - ▶ the map is boundary-anchored  $f({0,1}) \subseteq {0,1}$  with a fixed orientation;

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

▶ *f* is a degree *d* polynomial with d - 1 distinct critical points in (0, 1).

# What About Higher Degrees?

The meaning of "monotonicity" when the entropy function is multivariate? Answer: The connectedness of level sets (the *isentropes*).

#### Monotonicity of Entropy Conjecture (Milnor 1992)

For any  $d \ge 2$  the entropy function is monotonic on the parameter space of degree *d* "polynomial maps" of the interval.

- Here we deal with the class of maps  $f : [0, 1] \circlearrowleft s.t.$ 
  - ▶ the map is boundary-anchored  $f({0,1}) \subseteq {0,1}$  with a fixed orientation;
  - ▶ *f* is a degree *d* polynomial with d 1 distinct critical points in (0, 1).
  - Critical values then yield an easy description of the parameter space as an open subset of (0, 1)<sup>d-1</sup>.

(ロ) (同) (三) (三) (三) (○) (○)

# What About Higher Degrees?

The meaning of "monotonicity" when the entropy function is multivariate? Answer: The connectedness of level sets (the *isentropes*).

#### Monotonicity of Entropy Conjecture (Milnor 1992)

For any  $d \ge 2$  the entropy function is monotonic on the parameter space of degree *d* "polynomial maps" of the interval.

- Here we deal with the class of maps  $f : [0, 1] \circlearrowleft s.t.$ 
  - ▶ the map is boundary-anchored  $f({0,1}) \subseteq {0,1}$  with a fixed orientation;
  - ▶ *f* is a degree *d* polynomial with d 1 distinct critical points in (0, 1).
  - Critical values then yield an easy description of the parameter space as an open subset of (0, 1)<sup>d-1</sup>.

#### Theorem (Bruin-van Strien 2009)

Milnor's conjecture holds for the aforementioned family of polynomial maps.

- Entropy in Families of Polynomial Interval Maps

# The entropy behavior of real quadratic rational maps

#### The Main Result

The entropy function on the moduli space of real quadratic rational maps is not monotonic, but its restriction to certain dynamically defined regions is monotonic.

▲□▶▲□▶▲□▶▲□▶ □ のQ@

- Entropy in Families of Polynomial Interval Maps

# The entropy behavior of real quadratic rational maps

#### The Main Result

The entropy function on the moduli space of real quadratic rational maps is not monotonic, but its restriction to certain dynamically defined regions is monotonic.

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Things that should be addressed before the proof:

- Entropy in Families of Polynomial Interval Maps

# The entropy behavior of real quadratic rational maps

#### The Main Result

The entropy function on the moduli space of real quadratic rational maps is not monotonic, but its restriction to certain dynamically defined regions is monotonic.

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

- Things that should be addressed before the proof:
  - the "real entropy" of rational maps;

- Entropy in Families of Polynomial Interval Maps

# The entropy behavior of real quadratic rational maps

#### The Main Result

The entropy function on the moduli space of real quadratic rational maps is not monotonic, but its restriction to certain dynamically defined regions is monotonic.

- Things that should be addressed before the proof:
  - the "real entropy" of rational maps;
  - "real entropy function" defined on a "moduli space" of real rational maps;

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

- Entropy in Families of Polynomial Interval Maps

# The entropy behavior of real quadratic rational maps

#### The Main Result

The entropy function on the moduli space of real quadratic rational maps is not monotonic, but its restriction to certain dynamically defined regions is monotonic.

- Things that should be addressed before the proof:
  - the "real entropy" of rational maps;
  - "real entropy function" defined on a "moduli space" of real rational maps;

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

the structure of the moduli space of quadratic rational maps;

- Entropy in Families of Polynomial Interval Maps

# The entropy behavior of real quadratic rational maps

#### The Main Result

The entropy function on the moduli space of real quadratic rational maps is not monotonic, but its restriction to certain dynamically defined regions is monotonic.

- Things that should be addressed before the proof:
  - the "real entropy" of rational maps;
  - "real entropy function" defined on a "moduli space" of real rational maps;

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

- the structure of the moduli space of quadratic rational maps;
- > the experimental evidence on which this result is based.



- Entropy in Families of Polynomial Interval Maps
- Transitioning from Polynomials to Rational Maps
- 2 The Entropy Function on the Moduli of Real Rational Maps
  - The Moduli Space  $\mathcal{M}_d(\mathbb{C})$

#### 3 The Moduli of Real Quadratic Rational Maps

The Degree Zero Component of the Domain of  $h_{\mathbb{R}}$ Entropy Plots

- 4 A Monotonicity Result
- 5 A Non-Monotonicity Result

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

Transitioning from Polynomials to Rational Maps

# The Topological Entropy of a Rational Map

Can similar questions about isentropes be formulated in the much broader context of families of rational maps?

▲□▶▲□▶▲□▶▲□▶ □ のQ@

Transitioning from Polynomials to Rational Maps

# The Topological Entropy of a Rational Map

Can similar questions about isentropes be formulated in the much broader context of families of rational maps?

#### Fact (Lyubich 1981)

The topological entropy of rational map  $f : \hat{\mathbb{C}} \circlearrowleft$  of degree  $d \ge 2$  is  $\log(d)$ .

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Transitioning from Polynomials to Rational Maps

# The Topological Entropy of a Rational Map

Can similar questions about isentropes be formulated in the much broader context of families of rational maps?

#### Fact (Lyubich 1981)

The topological entropy of rational map  $f : \hat{\mathbb{C}} \circlearrowleft$  of degree  $d \ge 2$  is  $\log(d)$ .

So we need to focus on the entropy of a subsystem: We consider rational maps with real coefficients:

 $f \in \mathbb{C}(z)$  with real coefficients  $\Leftrightarrow f \in \mathbb{C}(z)$  keeps  $\hat{\mathbb{R}} := \mathbb{R} \cup \{\infty\}$  invariant.

Transitioning from Polynomials to Rational Maps

# The Topological Entropy of a Rational Map

Can similar questions about isentropes be formulated in the much broader context of families of rational maps?

#### Fact (Lyubich 1981)

The topological entropy of rational map  $f : \hat{\mathbb{C}} \circlearrowleft$  of degree  $d \ge 2$  is  $\log(d)$ .

So we need to focus on the entropy of a subsystem: We consider rational maps with real coefficients:

 $f \in \mathbb{C}(z)$  with real coefficients  $\Leftrightarrow f \in \mathbb{C}(z)$  keeps  $\hat{\mathbb{R}} := \mathbb{R} \cup \{\infty\}$  invariant.

#### Definition

The *Real Entropy* of  $f \in \mathbb{R}(z)$  is defined as:

$$h_{\mathbb{R}}(f) := h_{\mathrm{top}}\left(f \upharpoonright_{\hat{\mathbb{R}}}: \hat{\mathbb{R}} o \hat{\mathbb{R}}\right) \in [0, \log(\deg f)]$$
 .

- Transitioning from Polynomials to Rational Maps

# Subtleties Compared to the Polynomial Case

An Overview

Transitioning from Polynomials to Rational Maps

### Subtleties Compared to the Polynomial Case

#### Question

What can be said about the level sets of the function  $h_{\mathbb{R}}$  on the "space" of real rational maps of degree d?

▲□▶▲□▶▲□▶▲□▶ □ のQ@

Transitioning from Polynomials to Rational Maps

# Subtleties Compared to the Polynomial Case

#### Question

What can be said about the level sets of the function  $h_{\mathbb{R}}$  on the "space" of real rational maps of degree d?

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

■ Rather than boundary-anchored interval maps one has to deal with circle maps f <sub>\n</sub>: R O.

- Transitioning from Polynomials to Rational Maps

# Subtleties Compared to the Polynomial Case

#### Question

What can be said about the level sets of the function  $h_{\mathbb{R}}$  on the "space" of real rational maps of degree d?

- Rather than boundary-anchored interval maps one has to deal with circle maps f <sub>k</sub>: R O.
- 2 This context is far more general: The maps f ↾<sub>ℝ</sub>: R̂ ♂ come with various lap numbers and topological degrees.

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

- Transitioning from Polynomials to Rational Maps

# Subtleties Compared to the Polynomial Case

#### Question

What can be said about the level sets of the function  $h_{\mathbb{R}}$  on the "space" of real rational maps of degree d?

- Rather than boundary-anchored interval maps one has to deal with circle maps f <sub>k</sub>: R O.
- 2 This context is far more general: The maps f ↾<sub>ℝ</sub>: R̂ ♂ come with various lap numbers and topological degrees.

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

B How should we parametrize real rational maps of degree d?

- The Entropy Function on the Moduli of Real Rational Maps
  - The Moduli Space  $\mathcal{M}_d(\mathbb{C})$

- Entropy in Families of Polynomial Interval Maps
- Transitioning from Polynomials to Rational Maps
- 2 The Entropy Function on the Moduli of Real Rational Maps
  - The Moduli Space  $\mathcal{M}_d(\mathbb{C})$

The Entropy Function  $h_{\mathbb{R}} : \mathcal{M}'_d - \mathcal{S}' \to [0, \log(d)]$ 

#### 3 The Moduli of Real Quadratic Rational Maps

The Degree Zero Component of the Domain of  $h_{\mathbb{R}}$ 

- Entropy Plots
- 4 A Monotonicity Result
- 5 A Non-Monotonicity Result

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

- The Entropy Function on the Moduli of Real Rational Maps
  - The Moduli Space  $\mathcal{M}_d(\mathbb{C})$

### The Moduli Space of Degree *d* Rational Maps

■ The Moduli Space of rational maps of degree d ≥ 2 is a complex variety of dimension 2d - 2:

The "space" of Möbius conjugacy classes  

$$\mathcal{M}_d(\mathbb{C}) := \operatorname{Rat}_d(\mathbb{C})/\operatorname{PSL}_2(\mathbb{C})$$

$$= \frac{\{f \in \mathbb{C}(z) \text{ rational of degree } d\}}{f \sim \alpha \circ f \circ \alpha^{-1}} \ (\alpha \in \operatorname{PSL}_2(\mathbb{C}))$$

▲□▶▲□▶▲□▶▲□▶ □ のQ@

The Entropy Function on the Moduli of Real Rational Maps

– The Moduli Space  $\mathcal{M}_d(\mathbb{C})$ 

#### The Moduli Space of Degree *d* Rational Maps

■ The Moduli Space of rational maps of degree d ≥ 2 is a complex variety of dimension 2d - 2:

The "space" of Möbius conjugacy classes  

$$\mathcal{M}_{d}(\mathbb{C}) := \operatorname{Rat}_{d}(\mathbb{C})/\operatorname{PSL}_{2}(\mathbb{C})$$

$$= \frac{\{f \in \mathbb{C}(z) \text{ rational of degree } d\}}{f \sim \alpha \circ f \circ \alpha^{-1}} \ (\alpha \in \operatorname{PSL}_{2}(\mathbb{C}))$$

We consider the complex conjugacy classes of real maps:

The subspace of Möbius conjugacy classes of real maps  $\begin{aligned} \mathcal{M}'_d &:= \text{PSL}_2(\mathbb{C}). \left(\text{Rat}_d(\mathbb{R})\right)/\text{PSL}_2(\mathbb{C}) \\ \mathcal{M}'_d \subset \mathcal{M}_d(\mathbb{C}) \end{aligned}$ 

L The Entropy Function on the Moduli of Real Rational Maps

– The Moduli Space  $\mathcal{M}_d(\mathbb{C})$ 

#### Main Example: The Moduli Space $\mathcal{M}_2$

The moduli space of quadratic rational maps can be identified with the plane  $\mathbb{C}^2$  [Milnor 1993] via

$$\langle f \rangle \mapsto (\sigma_1 = \lambda_1 + \lambda_2 + \lambda_3, \sigma_2 = \lambda_1 \lambda_2 + \lambda_2 \lambda_3 + \lambda_3 \lambda_1);$$

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

The Entropy Function on the Moduli of Real Rational Maps

– The Moduli Space  $\mathcal{M}_d(\mathbb{C})$ 

## Main Example: The Moduli Space $\mathcal{M}_2$

The moduli space of quadratic rational maps can be identified with the plane C<sup>2</sup> [Milnor 1993] via

$$\langle f \rangle \mapsto (\sigma_1 = \lambda_1 + \lambda_2 + \lambda_3, \sigma_2 = \lambda_1 \lambda_2 + \lambda_2 \lambda_3 + \lambda_3 \lambda_1);$$

where

 $\lambda_1, \lambda_2, \lambda_3$ : the multipliers of fixed points (Möbius invariants)

satisfy the fixed point formula:  $\frac{1}{1-\lambda_1} + \frac{1}{1-\lambda_2} + \frac{1}{1-\lambda_3} = 1$ .

・ロト・日本・モート ヨー うへの

The Entropy Function on the Moduli of Real Rational Maps

– The Moduli Space  $\mathcal{M}_d(\mathbb{C})$ 

## Main Example: The Moduli Space $\mathcal{M}_2$

The moduli space of quadratic rational maps can be identified with the plane C<sup>2</sup> [Milnor 1993] via

$$\langle f \rangle \mapsto (\sigma_1 = \lambda_1 + \lambda_2 + \lambda_3, \sigma_2 = \lambda_1 \lambda_2 + \lambda_2 \lambda_3 + \lambda_3 \lambda_1);$$

where

 $\lambda_1, \lambda_2, \lambda_3$ : the multipliers of fixed points (Möbius invariants)

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

satisfy the fixed point formula: 
$$\boxed{\frac{1}{1-\lambda_1} + \frac{1}{1-\lambda_2} + \frac{1}{1-\lambda_3} = 1}$$

•  $\mathcal{M}'_2 \cong \mathbb{R}^2$  is the underlying real  $(\sigma_1, \sigma_2)$ -plane.

The Entropy Function on the Moduli of Real Rational Maps

The Entropy Function  $h_{\mathbb{R}} : \mathcal{M}'_d - \mathcal{S}' \to [0, \log(d)]$ 

#### An Overview

- Entropy in Families of Polynomial Interval Maps
- Transitioning from Polynomials to Rational Maps
- 2 The Entropy Function on the Moduli of Real Rational Maps
  - The Moduli Space  $\mathcal{M}_d(\mathbb{C})$
  - The Entropy Function  $h_{\mathbb{R}} : \mathcal{M}'_d \mathcal{S}' \to [0, \log(d)]$

#### 3 The Moduli of Real Quadratic Rational Maps

The Degree Zero Component of the Domain of h<sub>R</sub>
 Entropy Plots

- 4 A Monotonicity Result
- 5 A Non-Monotonicity Result

・ロト・西ト・西ト・西・ うろの

- The Entropy Function on the Moduli of Real Rational Maps
  - L The Entropy Function  $h_{\mathbb{R}}: \mathcal{M}'_d \mathcal{S}' \to [0, \log(d)]$

 $h_{\mathbb{R}}$  as a Function on  $\mathcal{M}'_d$ ?!



L The Entropy Function on the Moduli of Real Rational Maps

L The Entropy Function  $h_{\mathbb{R}} : \mathcal{M}'_d - \mathcal{S}' \to [0, \log(d)]$ 

## $h_{\mathbb{R}}$ as a Function on $\mathcal{M}'_d$ ?!

**First Attempt** 

$$\langle f \rangle \mapsto h_{\mathbb{R}}(f) = h_{\mathrm{top}}\left(f \upharpoonright_{\hat{\mathbb{R}}} : \hat{\mathbb{R}} \to \hat{\mathbb{R}}\right)$$

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ─ □ ─ の < @

The Entropy Function on the Moduli of Real Rational Maps

- The Entropy Function  $h_{\mathbb{R}} : \mathcal{M}'_d - \mathcal{S}' \to [0, \log(d)]$ 

 $h_{\mathbb{R}}$  as a Function on  $\mathcal{M}'_d$ ?!

First Attempt

$$\langle f 
angle \mapsto h_{\mathbb{R}}(f) = h_{ ext{top}}\left(f \upharpoonright_{\hat{\mathbb{R}}}: \hat{\mathbb{R}} o \hat{\mathbb{R}}
ight)$$

< □ > < 同 > < Ξ > < Ξ > < Ξ > < Ξ < </p>

#### not well defined!

There might be representatives conjugate only by elements of  $PSL_2(\mathbb{C}) = PGL_2(\mathbb{C})$ , not by elements of  $PGL_2(\mathbb{R})$ .

The Entropy Function on the Moduli of Real Rational Maps

- The Entropy Function  $h_{\mathbb{R}} : \mathcal{M}'_d - \mathcal{S}' \to [0, \log(d)]$ 

$$h_{\mathbb{R}}$$
 as a Function on  $\mathcal{M}'_d$ ?!

#### First Attempt

$$\langle f \rangle \mapsto h_{\mathbb{R}}(f) = h_{\mathrm{top}}\left(f \upharpoonright_{\hat{\mathbb{R}}} : \hat{\mathbb{R}} \to \hat{\mathbb{R}}\right)$$

#### not well defined!

There might be representatives conjugate only by elements of  $PSL_2(\mathbb{C}) = PGL_2(\mathbb{C})$ , not by elements of  $PGL_2(\mathbb{R})$ .

#### Example

Maps  $z \mapsto \frac{1}{\mu} \left( z \pm \frac{1}{z} \right)$  ( $\mu \in \mathbb{R} - \{0\}$ ) are conjugate over  $\mathbb{C}$ 

$$\frac{1}{\mathrm{i}} \cdot \frac{1}{\mu} \left( \mathrm{i} z + \frac{1}{\mathrm{i} z} \right) = \frac{1}{\mu} \left( z - \frac{1}{z} \right);$$

but restricted to  $\hat{\mathbb{R}} = \mathbb{R} \cup \{\infty\}$ :

•  $x \mapsto \frac{1}{\mu} \left( x - \frac{1}{x} \right)$  is a two-sheeted covering and of entropy log(2); •  $x \mapsto \frac{1}{\mu} \left( x + \frac{1}{x} \right)$  is of entropy zero.

- The Entropy Function on the Moduli of Real Rational Maps
  - The Entropy Function  $h_{\mathbb{R}}: \mathcal{M}'_d \mathcal{S}' 
    ightarrow [0, \log(d)]$

## **Excluding Symmetries**

This issue of real rational maps that are conjugate only over complex numbers can happen only in presence of *Möbius symmetries*; e.g.

$$-\frac{1}{\mu}\left(z+\frac{1}{z}\right)=\frac{1}{\mu}\left((-z)+\frac{1}{-z}\right).$$

< □ > < 同 > < Ξ > < Ξ > < Ξ > < Ξ < </p>

- The Entropy Function on the Moduli of Real Rational Maps
  - The Entropy Function  $h_{\mathbb{R}} : \mathcal{M}'_d \mathcal{S}' \to [0, \log(d)]$

## **Excluding Symmetries**

This issue of real rational maps that are conjugate only over complex numbers can happen only in presence of *Möbius symmetries*; e.g.

$$-\frac{1}{\mu}\left(z+\frac{1}{z}\right)=\frac{1}{\mu}\left((-z)+\frac{1}{-z}\right).$$

#### So we have to exclude the symmetry locus

 $\mathcal{S}' := \{ \langle f \rangle \in \mathcal{M}_d(\mathbb{C}) \mid f \in \operatorname{Rat}_d(\mathbb{R}), \operatorname{Aut}(f) \neq \{1\} \} \subset \mathcal{M}'_d$ 

(日) (日) (日) (日) (日) (日) (日)

in order to have a well defined real entropy function.

- The Entropy Function on the Moduli of Real Rational Maps
  - The Entropy Function  $h_{\mathbb{R}}: \mathcal{M}'_d \mathcal{S}' \to [0, \log(d)]$

# The Real Entropy Function $h_{\mathbb{R}}$

#### Proposition (F. 2018)

For any  $d \ge 2$ :

- $\mathcal{M}'_d \mathcal{S}'$  is an irreducible real variety of dimension 2d 2.
- The function

$$\begin{cases} h_{\mathbb{R}} : \mathcal{M}'_{d} - \mathcal{S}' \to [0, \log(d)] \\ \langle f \rangle \mapsto h_{\mathrm{top}} \left( f \mid_{\hat{\mathbb{R}}} : \hat{\mathbb{R}} \to \hat{\mathbb{R}} \right) \end{cases} \qquad (f \in \mathbb{R}(z)) \end{cases}$$

is surjective and continuous (in the analytic topology).

The domain is disconnected with components (each of the same real dimension 2d − 2) corresponding to possible topological degrees of the restriction f |<sub>k</sub>: k → k.

(日) (日) (日) (日) (日) (日) (日)

- The Entropy Function on the Moduli of Real Rational Maps
  - The Entropy Function  $h_{\mathbb{R}}: \mathcal{M}'_d \mathcal{S}' 
    ightarrow [0, \log(d)]$

# The Real Entropy Function $h_{\mathbb{R}}$

#### Proposition (F. 2018)

For any  $d \ge 2$ :

- $\mathcal{M}'_d \mathcal{S}'$  is an irreducible real variety of dimension 2d 2.
- The function

$$\begin{cases} h_{\mathbb{R}} : \mathcal{M}'_{d} - \mathcal{S}' \to [0, \log(d)] \\ \langle f \rangle \mapsto h_{\text{top}} \left( f \restriction_{\hat{\mathbb{R}}} : \hat{\mathbb{R}} \to \hat{\mathbb{R}} \right) \end{cases} \quad (f \in \mathbb{R}(z)) \end{cases}$$

is surjective and continuous (in the analytic topology).

The domain is disconnected with components (each of the same real dimension 2d − 2) corresponding to possible topological degrees of the restriction f \<sub>k</sub>: k → k.

#### The Monotonicity Question

Restricted to connected components of the domain, are the level sets of  $h_{\mathbb{R}}$  connected?

- The Entropy Function on the Moduli of Real Rational Maps
  - The Entropy Function  $h_{\mathbb{R}} : \mathcal{M}'_d \mathcal{S}' \to [0, \log(d)]$

## Back to the Main Example: $\mathcal{M}'_2 - \mathcal{S}'$ has three connected components.



$$\mathcal{S}' = \left\{ \left\langle \frac{1}{\mu} \left( z + \frac{1}{z} \right) \right\rangle = \left\langle \frac{1}{\mu} \left( z - \frac{1}{z} \right) \right\rangle \Big| \mu \in \mathbb{R} - \{0\} \right\} \text{ a cubic curve in } \mathcal{M}'_2 = \mathbb{R}^2$$
  
The topological degree of the restriction is ±2 or zero.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

- The Moduli of Real Quadratic Rational Maps
  - I The Degree Zero Component of the Domain of  $h_{\mathbb{R}}$

#### 1 An Overview

- Entropy in Families of Polynomial Interval Maps
- Transitioning from Polynomials to Rational Maps
- 2 The Entropy Function on the Moduli of Real Rational Maps
  - The Moduli Space  $\mathcal{M}_d(\mathbb{C})$
  - The Entropy Function  $h_{\mathbb{R}} : \mathcal{M}'_d \mathcal{S}' \to [0, \log(d)]$
- 3 The Moduli of Real Quadratic Rational Maps
   The Degree Zero Component of the Domain of h<sub>R</sub>
   Entropy Plots
- 4 A Monotonicity Result
- 5 A Non-Monotonicity Result

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

- The Moduli of Real Quadratic Rational Maps
  - The Degree Zero Component of the Domain of  $h_{\mathbb{R}}$

## A Simple Dichotomy for Real Quadratic Maps

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

- The Moduli of Real Quadratic Rational Maps
  - The Degree Zero Component of the Domain of  $h_{\mathbb{R}}$

## A Simple Dichotomy for Real Quadratic Maps

For  $f \in \mathbb{R}(z)$  of degree two; either

the two critical points are complex conjugate ⇒ f ↾<sub>k</sub>: k̂ → k̂ a 2-sheeted covering ⇒ h<sub>R</sub>(f) = log(2)

(日) (日) (日) (日) (日) (日) (日)

• or the critical points are real;  $f(\hat{\mathbb{R}}) \subsetneq \hat{\mathbb{R}} \Rightarrow$  only the interval map  $f \upharpoonright_{f(\hat{\mathbb{R}})} : f(\hat{\mathbb{R}}) \rightarrow f(\hat{\mathbb{R}})$  matters dynamically.

- The Moduli of Real Quadratic Rational Maps
  - The Degree Zero Component of the Domain of  $h_{\mathbb{R}}$

# A Simple Dichotomy for Real Quadratic Maps

For  $f \in \mathbb{R}(z)$  of degree two; either

- the two critical points are complex conjugate ⇒ f ↾<sub>ℝ</sub>: ℝ̂ → ℝ̂ a 2-sheeted covering ⇒ h<sub>ℝ</sub>(f) = log(2)
- or the critical points are real;  $f(\hat{\mathbb{R}}) \subsetneq \hat{\mathbb{R}} \Rightarrow$  only the interval map  $f \upharpoonright_{f(\hat{\mathbb{R}})} : f(\hat{\mathbb{R}}) \rightarrow f(\hat{\mathbb{R}})$  matters dynamically.

Upshot  $\star$  Among all three connected components of  $\mathcal{M}_2'-\mathcal{S}'$  only one connected component is relevant to our discussion; the component of degree zero maps.

(日)

- The Moduli of Real Quadratic Rational Maps
  - The Degree Zero Component of the Domain of h<sub>i</sub>

## The Component of Degree Zero Maps in $\mathcal{M}'_2 - \mathcal{S}'$



▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

- The Moduli of Real Quadratic Rational Maps
  - The Degree Zero Component of the Domain of h<sub>R</sub>

## The Component of Degree Zero Maps in $\mathcal{M}'_2 - \mathcal{S}'$



There is a finer partition of this component according to the orientation and modality of the interval map.

▲□▶▲□▶▲□▶▲□▶ □ のQ@

- The Moduli of Real Quadratic Rational Maps
  - The Degree Zero Component of the Domain of h<sub>R</sub>

## The Component of Degree Zero Maps in $\mathcal{M}'_2 - \mathcal{S}'$



- There is a finer partition of this component according to the orientation and modality of the interval map.
- $h_{\mathbb{R}} \equiv 0$  on monotonic regions and  $h_{\mathbb{R}} \equiv \log(2)$  on deg  $\pm 2$  regions.
- Upshot ★ Only the unimodal region and the two bimodal regions adjacent to it matter to the monotonicity discussion.

The Moduli of Real Quadratic Rational Maps



#### An Overview

- Entropy in Families of Polynomial Interval Maps
- Transitioning from Polynomials to Rational Maps
- 2 The Entropy Function on the Moduli of Real Rational Maps
  - The Moduli Space  $\mathcal{M}_d(\mathbb{C})$
  - The Entropy Function  $h_{\mathbb{R}} : \mathcal{M}'_d \mathcal{S}' \to [0, \log(d)]$

#### 3 The Moduli of Real Quadratic Rational Maps

- The Degree Zero Component of the Domain of  $h_{\mathbb{R}}$
- Entropy Plots
- 4 A Monotonicity Result
- 5 A Non-Monotonicity Result

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

The Moduli of Real Quadratic Rational Maps

Entropy Plots

An Entropy Contour Plot in the Unimodal and (-+-)-Bimodal Regions



black blue magenta green cyan yellow red [0, 0.1) [0.1, 0.25) [0.25, 0.4) [0.4, 0.48) [0.48, 0.55) [0.55, 0.65)  $[0.65, \log(2) \approx 0.7]$ 

The Moduli of Real Quadratic Rational Maps

- Entropy Plots

An Entropy Contour Plot in the Unimodal and (-+-)-Bimodal Regions



black blue magenta green cyan yellow red  $[0,0.1)~[0.1,0.25)~[0.25,0.4)~[0.4,0.48)~[0.48,0.55)~[0.55,0.65)~[0.65,log(2)\approx0.7]$ 

#### **Conjecture**

Restricted to the union of adjacent unimodal and (-+-)-bimodal regions the entropy function is monotonic.

・ロト・「聞ト・「聞ト・「聞ト・」 目・

The Moduli of Real Quadratic Rational Maps

Entropy Plots

#### An Entropy Contour Plot in the (+-+)-Bimodal Region



black blue magenta green cyan yellow red failure [0, 0.05) [0.05, 0.2) [0.2, 0.3) [0.3, 0.5) [0.5, 0.66)  $[0.66, \log(2) \approx 0.7]$ 

▲□▶ ▲圖▶ ▲ 国▶ ▲ 国▶ - 国 - のへで

The Moduli of Real Quadratic Rational Maps

Entropy Plots

## An Entropy Contour Plot in the (+-+)-Bimodal Region



black blue magenta green cyan yellow red failure [0, 0.05) [0.05, 0.2) [0.2, 0.3) [0.3, 0.5) [0.5, 0.66)  $[0.66, \log(2) \approx 0.7]$ 

#### Conjecture

The monotonicity fails here due to a "non-polynomial" behavior.

・ロト・西ト・西ト・西ト・日 うくの

- The Moduli of Real Quadratic Rational Maps
  - Entropy Plots

## The Algorithms Used to Generate the Plots

- L. Block, J. Keesling, S. Li, and K. Peterson. An improved algorithm for computing topological entropy. J. Statist. Phys., 1989.
- L. Block and J. Keesling. Computing the topological entropy of maps of the interval with three monotone pieces. J. Statist. Phys., 1992.

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

- The Moduli of Real Quadratic Rational Maps
  - Entropy Plots

#### Going back to the moduli space

Summarizing the conjectures:



◆□▶ ◆□▶ ◆豆▶ ◆豆▶ □ のへで

- The Moduli of Real Quadratic Rational Maps
  - Entropy Plots

#### Going back to the moduli space

Summarizing the conjectures:



An important line in the picture:  $\sigma_2 = 2\sigma_1 - 3$  – the locus where one of the fixed points becomes multiple.

・ロト・西ト・西ト・日下 ひゃぐ



- Entropy in Families of Polynomial Interval Maps
- Transitioning from Polynomials to Rational Maps
- 2 The Entropy Function on the Moduli of Real Rational Maps
  - The Moduli Space  $\mathcal{M}_d(\mathbb{C})$
  - The Entropy Function  $h_{\mathbb{R}} : \mathcal{M}'_d \mathcal{S}' \to [0, \log(d)]$
- 3 The Moduli of Real Quadratic Rational Maps
  - The Degree Zero Component of the Domain of  $h_{\mathbb{R}}$
  - Entropy Plots
- 4 A Monotonicity Result
- 5 A Non-Monotonicity Result

#### The Statement of the Theorem



#### Theorem (F. 2018)

Restricted to the part of the moduli space where the critical points are real and the maps admit three real fixed points, the level sets of  $h_{\mathbb{R}}$  are connected.

#### Proof; Step 1: An Analysis of Real Fixed Points



▲□▶ ▲□▶ ▲□▶ ▲□▶ = 三 のへで

## Proof; Step 1: An Analysis of Real Fixed Points



If there are three real fixed points, at least one of them must be attracting:

$$\begin{array}{l} \lambda_1, \lambda_2, \lambda_3 \in \mathbb{R} - \{1\} \text{ w/ at least one of them non-negative} \\ \frac{1}{1-\lambda_1} + \frac{1}{1-\lambda_2} + \frac{1}{1-\lambda_3} = 1 \end{array} \right\} \Rightarrow \exists i \text{ s.t. } |\lambda_i| < 1.$$

## Proof; Step 2: A Straightening Argument

▲□▶▲圖▶▲≣▶▲≣▶ ≣ の�?

Proof; Step 2: A Straightening Argument

Douady and Hubbard's Theory of Polynomial-like Mappings : The fixed point can be made super-attracting by a quasi-conformal perturbation outside its basin.

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

## Proof; Step 2: A Straightening Argument

- Douady and Hubbard's Theory of Polynomial-like Mappings : The fixed point can be made super-attracting by a quasi-conformal perturbation outside its basin.
- As the fixed point is real, this can be done such that the resulting polynomial is real: The "important" part of the dynamics on  $\hat{\mathbb{R}}$  comes from is induced by a real quadratic polynomial.

(ロ) (同) (三) (三) (三) (○) (○)

## Proof; Step 2: A Straightening Argument

- Douady and Hubbard's Theory of Polynomial-like Mappings : The fixed point can be made super-attracting by a quasi-conformal perturbation outside its basin.
- As the fixed point is real, this can be done such that the resulting polynomial is real: The "important" part of the dynamics on  $\hat{\mathbb{R}}$  comes from is induced by a real quadratic polynomial.

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

This straightening can be done through the family.

## Proof; Step 2: A Straightening Argument

- Douady and Hubbard's Theory of Polynomial-like Mappings : The fixed point can be made super-attracting by a quasi-conformal perturbation outside its basin.
- As the fixed point is real, this can be done such that the resulting polynomial is real: The "important" part of the dynamics on  $\hat{\mathbb{R}}$  comes from is induced by a real quadratic polynomial.

(ロ) (同) (三) (三) (三) (○) (○)

- This straightening can be done through the family.
- The monotonicity of entropy for quadratic polynomials has been established by Milnor and Thurston.



- Entropy in Families of Polynomial Interval Maps
- Transitioning from Polynomials to Rational Maps
- - The Moduli Space  $\mathcal{M}_d(\mathbb{C})$
  - The Entropy Function  $h_{\mathbb{R}} : \mathcal{M}'_d \mathcal{S}' \to [0, \log(d)]$
- - The Degree Zero Component of the Domain of  $h_{\mathbb{R}}$
  - Entropy Plots
- 5 A Non-Monotonicity Result

- A Non-Monotonicity Result

## An Interesting Bifurcation Behavior

The bifurcation diagram for a part of the (+-+)-bimodal region parametrized as  $\left\{x \mapsto \frac{2\mu x(tx+2)}{\mu^2 x^2 + (tx+2)^2} : [-1,1] \bigcirc \right\}_{-26 < \mu < -19, -5 < t < -1}$ . A period-doubling bifurcation from a 5-cycle to a 10-cycle visible as the transition from green to magenta occurs in "various" directions.



## A Non-Polynomial Behavior

#### Theorem (F.-Pilgrim 2019)

The restriction of  $h_{\mathbb{R}}$  to the (+-+)-bimodal region admits a continuum of disconnected level sets.

▲□▶▲□▶▲□▶▲□▶ □ のQ@

## A Non-Polynomial Behavior

#### Theorem (F.-Pilgrim 2019)

The restriction of  $h_{\mathbb{R}}$  to the (+-+)-bimodal region admits a continuum of disconnected level sets.

Why "non-polynomial"? Bicritical rational maps whose fixed points are all repelling are called essentially non-polynomial-like [Milnor-2000].

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

## A Non-Polynomial Behavior

#### Theorem (F.-Pilgrim 2019)

The restriction of  $h_{\mathbb{R}}$  to the (+-+)-bimodal region admits a continuum of disconnected level sets.

 Why "non-polynomial"? Bicritical rational maps whose fixed points are all repelling are called essentially non-polynomial-like [Milnor-2000].

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

■ The main idea of the proof: Construct a family of real hyperbolic components consisting of essentially non-polynomial quadratic rational maps in the (+ - +)-region.