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Entropy of Multimodal Interval or Circle Maps

Consider a continuous multimodal self-map of a compact interval or a circle.

f : I 	 f : S1 	

Fact (Misiurewicz-Szlenk 1980)

The topological entropy is the growth rate of the lap number (the number of
monotonic pieces) of iterates.

htop(f ) = lim
n→∞

1
n

log
(
l(f ◦n)

)
= inf

n

1
n

log
(
l(f ◦n)

)
.
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The Motivating Question

How the topological entropy varies in a family of interval or circle maps?

Consider the Logistic Family :{
fa : [0, 1]→ [0, 1]
x 7→ ax(1− x)

(a ∈ [0, 4]).

The bifurcation diagram The entropy as a function of a
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Two Important Properties

We observe that the function a 7→ htop(fa) is a Devil’s Staircase:

It is increasing.

The Monotonicity of Entropy for the Quadratic Family
[Milnor-Thurston 1988, Douady-Hubbard-Sullivan]

It is not strictly increasing over any open subinterval.

The Density of Hyperbolicity for the Quadratic Family [Lyubich 1997,
Graczyk-Świa̧tek 1997]
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What About Higher Degrees?

The meaning of “monotonicity” when the entropy function is multivariate?

Answer: The connectedness of level sets (the isentropes).

Monotonicity of Entropy Conjecture (Milnor 1992)

For any d ≥ 2 the entropy function is monotonic on the parameter space of
degree d “polynomial maps” of the interval.

Here we deal with the class of maps f : [0, 1] 	 s.t.
I the map is boundary-anchored f ({0, 1}) ⊆ {0, 1} with a fixed orientation;
I f is a degree d polynomial with d − 1 distinct critical points in (0, 1).
I Critical values then yield an easy description of the parameter space as an

open subset of (0, 1)d−1.

Theorem (Bruin-van Strien 2009)

Milnor’s conjecture holds for the aforementioned family of polynomial maps.
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The entropy behavior of real quadratic rational maps

The Main Result

The entropy function on the moduli space of real quadratic rational maps is
not monotonic, but its restriction to certain dynamically defined regions is
monotonic.

Things that should be addressed before the proof:
I the “real entropy” of rational maps;
I “real entropy function” defined on a “moduli space” of real rational maps;
I the structure of the moduli space of quadratic rational maps;
I the experimental evidence on which this result is based.
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The Topological Entropy of a Rational Map

Can similar questions about isentropes be formulated in the much broader
context of families of rational maps?

Fact (Lyubich 1981)

The topological entropy of rational map f : Ĉ 	 of degree d ≥ 2 is log(d).

So we need to focus on the entropy of a subsystem: We consider rational
maps with real coefficients:

f ∈ C(z) with real coefficients ⇔ f ∈ C(z) keeps R̂ := R ∪ {∞} invariant.

Definition

The Real Entropy of f ∈ R(z) is defined as:

hR(f ) := htop

(
f �R̂: R̂→ R̂

)
∈ [0, log(deg f )] .
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Subtleties Compared to the Polynomial Case

Question

What can be said about the level sets of the function hR on the “space” of real
rational maps of degree d?

1 Rather than boundary-anchored interval maps one has to deal with
circle maps f �R̂: R̂ 	.

2 This context is far more general: The maps f �R̂: R̂ 	 come with various
lap numbers and topological degrees.

3 How should we parametrize real rational maps of degree d?
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The Moduli SpaceMd (C)

The Moduli Space of Degree d Rational Maps

The Moduli Space of rational maps of degree d ≥ 2 is a complex variety
of dimension 2d − 2:

The “space” of Möbius conjugacy classes

Md (C) := Ratd (C)/PSL2(C)

=
{f ∈ C(z) rational of degree d}

f ∼ α ◦ f ◦ α−1 (α ∈ PSL2(C))

We consider the complex conjugacy classes of real maps:

The subspace of Möbius conjugacy classes of real maps
M′d := PSL2(C). (Ratd(R)) /PSL2(C)

M′d ⊂Md(C)
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The Moduli SpaceMd (C)

Main Example: The Moduli SpaceM2

The moduli space of quadratic rational maps can be identified with the
plane C2 [Milnor 1993] via

〈f 〉 7→ (σ1 = λ1 + λ2 + λ3, σ2 = λ1λ2 + λ2λ3 + λ3λ1) ;

where

λ1, λ2, λ3 : the multipliers of fixed points (Möbius invariants)

satisfy the fixed point formula:
1

1− λ1
+

1
1− λ2

+
1

1− λ3
= 1 .

M′2 ∼= R2 is the underlying real (σ1, σ2)-plane.
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The Entropy Function hR :M′d − S
′ → [0, log(d)]

hR as a Function onM′d?!

First Attempt
〈f 〉 7→ hR(f ) = htop

(
f �R̂: R̂→ R̂

)
not well defined!

There might be representatives conjugate only by elements of
PSL2(C) = PGL2(C), not by elements of PGL2(R).

Example

Maps z 7→ 1
µ

(
z ± 1

z

)
(µ ∈ R− {0}) are conjugate over C

1
i
.
1
µ

(
iz +

1
iz

)
=

1
µ

(
z − 1

z

)
;

but restricted to R̂ = R ∪ {∞}:
x 7→ 1

µ

(
x − 1

x

)
is a two-sheeted covering and of entropy log(2);

x 7→ 1
µ

(
x + 1

x

)
is of entropy zero.
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The Entropy Function on the Moduli of Real Rational Maps

The Entropy Function hR :M′d − S
′ → [0, log(d)]

Excluding Symmetries

This issue of real rational maps that are conjugate only over complex
numbers can happen only in presence of Möbius symmetries; e.g.

−1
µ

(
z +

1
z

)
=

1
µ

(
(−z) +

1
−z

)
.

So we have to exclude the symmetry locus

S ′ := {〈f 〉 ∈ Md (C) | f ∈ Ratd(R),Aut(f ) 6= {1}} ⊂ M′d

in order to have a well defined real entropy function.
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The Entropy Function on the Moduli of Real Rational Maps

The Entropy Function hR :M′d − S
′ → [0, log(d)]

The Real Entropy Function hR

Proposition (F. 2018)

For any d ≥ 2:

M′d − S ′ is an irreducible real variety of dimension 2d − 2.
The function {

hR :M′d − S
′ → [0, log(d)]

〈f 〉 7→ htop

(
f �R̂: R̂→ R̂

) (f ∈ R(z))

is surjective and continuous (in the analytic topology).

The domain is disconnected with components (each of the same real
dimension 2d − 2) corresponding to possible topological degrees of the
restriction f �R̂: R̂→ R̂.

The Monotonicity Question

Restricted to connected components of the domain, are the level sets of hR
connected?
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The Entropy Function on the Moduli of Real Rational Maps

The Entropy Function hR :M′d − S
′ → [0, log(d)]

Back to the Main Example: M′2 − S ′ has three connected components.

S′ =
{〈

1
µ

(
z + 1

z

)〉
=
〈

1
µ

(
z − 1

z

)〉 ∣∣∣µ ∈ R− {0}
}

a cubic curve inM′2 = R2

The topological degree of the restriction is ±2 or zero.
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On the real entropy of quadratic rational maps

The Moduli of Real Quadratic Rational Maps

The Degree Zero Component of the Domain of hR

A Simple Dichotomy for Real Quadratic Maps

For f ∈ R(z) of degree two; either

the two critical points are complex conjugate⇒ f �R̂: R̂→ R̂ a 2-sheeted
covering⇒ hR(f ) = log(2)

or the critical points are real; f (R̂) ( R̂⇒ only the interval map
f �f (R̂): f (R̂)→ f (R̂) matters dynamically.

Upshot ? Among all three connected components ofM′2 − S ′ only one
connected component is relevant to our discussion; the component of
degree zero maps.
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On the real entropy of quadratic rational maps

The Moduli of Real Quadratic Rational Maps

The Degree Zero Component of the Domain of hR

The Component of Degree Zero Maps inM′2 − S ′

There is a finer partition of this component according to the orientation
and modality of the interval map.
hR ≡ 0 on monotonic regions and hR ≡ log(2) on deg±2 regions.
Upshot ? Only the unimodal region and the two bimodal regions
adjacent to it matter to the monotonicity discussion.



On the real entropy of quadratic rational maps

The Moduli of Real Quadratic Rational Maps

The Degree Zero Component of the Domain of hR

The Component of Degree Zero Maps inM′2 − S ′

There is a finer partition of this component according to the orientation
and modality of the interval map.

hR ≡ 0 on monotonic regions and hR ≡ log(2) on deg±2 regions.
Upshot ? Only the unimodal region and the two bimodal regions
adjacent to it matter to the monotonicity discussion.



On the real entropy of quadratic rational maps

The Moduli of Real Quadratic Rational Maps

The Degree Zero Component of the Domain of hR

The Component of Degree Zero Maps inM′2 − S ′

There is a finer partition of this component according to the orientation
and modality of the interval map.
hR ≡ 0 on monotonic regions and hR ≡ log(2) on deg±2 regions.
Upshot ? Only the unimodal region and the two bimodal regions
adjacent to it matter to the monotonicity discussion.



On the real entropy of quadratic rational maps

The Moduli of Real Quadratic Rational Maps

Entropy Plots

1 An Overview
Entropy in Families of Polynomial Interval Maps
Transitioning from Polynomials to Rational Maps

2 The Entropy Function on the Moduli of Real Rational Maps
The Moduli SpaceMd (C)
The Entropy Function hR :M′d − S ′ → [0, log(d)]

3 The Moduli of Real Quadratic Rational Maps
The Degree Zero Component of the Domain of hR
Entropy Plots

4 A Monotonicity Result

5 A Non-Monotonicity Result



On the real entropy of quadratic rational maps

The Moduli of Real Quadratic Rational Maps

Entropy Plots

An Entropy Contour Plot in the Unimodal and (−+−)-Bimodal Regions
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Conjecture

Restricted to the union of adjacent unimodal and (−+−)-bimodal regions
the entropy function is monotonic.



On the real entropy of quadratic rational maps

The Moduli of Real Quadratic Rational Maps

Entropy Plots

An Entropy Contour Plot in the Unimodal and (−+−)-Bimodal Regions

black
[0, 0.1)

blue
[0.1, 0.25)

magenta
[0.25, 0.4)

green
[0.4, 0.48)

cyan
[0.48, 0.55)

yellow
[0.55, 0.65)

red
[0.65, log(2) ≈ 0.7]

Conjecture

Restricted to the union of adjacent unimodal and (−+−)-bimodal regions
the entropy function is monotonic.



On the real entropy of quadratic rational maps

The Moduli of Real Quadratic Rational Maps

Entropy Plots

An Entropy Contour Plot in the (+−+)-Bimodal Region
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The monotonicity fails here due to a “non-polynomial” behavior.
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The Moduli of Real Quadratic Rational Maps

Entropy Plots

The Algorithms Used to Generate the Plots

L. Block, J. Keesling, S. Li, and K. Peterson. An improved algorithm
for computing topological entropy. J. Statist. Phys., 1989.

L. Block and J. Keesling. Computing the topological entropy of maps
of the interval with three monotone pieces. J. Statist. Phys., 1992.
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Going back to the moduli space
Summarizing the conjectures:

An important line in the picture: σ2 = 2σ1 − 3 – the locus where one of
the fixed points becomes multiple.



On the real entropy of quadratic rational maps

The Moduli of Real Quadratic Rational Maps

Entropy Plots

Going back to the moduli space
Summarizing the conjectures:

An important line in the picture: σ2 = 2σ1 − 3 – the locus where one of
the fixed points becomes multiple.



On the real entropy of quadratic rational maps

A Monotonicity Result

1 An Overview
Entropy in Families of Polynomial Interval Maps
Transitioning from Polynomials to Rational Maps

2 The Entropy Function on the Moduli of Real Rational Maps
The Moduli SpaceMd (C)
The Entropy Function hR :M′d − S ′ → [0, log(d)]

3 The Moduli of Real Quadratic Rational Maps
The Degree Zero Component of the Domain of hR
Entropy Plots

4 A Monotonicity Result

5 A Non-Monotonicity Result



On the real entropy of quadratic rational maps

A Monotonicity Result

The Statement of the Theorem

Theorem (F. 2018)

Restricted to the part of the moduli space where the critical points are real
and the maps admit three real fixed points, the level sets of hR are connected.



On the real entropy of quadratic rational maps

A Monotonicity Result

Proof; Step 1: An Analysis of Real Fixed Points

If there are three real fixed points, at least one of them must be
attracting:

λ1, λ2, λ3 ∈ R− {1} w/ at least one of them non-negative
1

1−λ1
+ 1

1−λ2
+ 1

1−λ3
= 1

}
⇒ ∃i s.t. |λi | < 1.
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On the real entropy of quadratic rational maps

A Monotonicity Result

Proof; Step 2: A Straightening Argument

Douady and Hubbard’s Theory of Polynomial-like Mappings : The fixed
point can be made super-attracting by a quasi-conformal perturbation
outside its basin.

As the fixed point is real, this can be done such that the resulting
polynomial is real: The “important” part of the dynamics on R̂ comes
from is induced by a real quadratic polynomial.

This straightening can be done through the family.

The monotonicity of entropy for quadratic polynomials has been
established by Milnor and Thurston.
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A Non-Monotonicity Result

An Interesting Bifurcation Behavior
The bifurcation diagram for a part of the (+−+)-bimodal region
parametrized as

{
x 7→ 2µx(tx+2)

µ2x2+(tx+2)2 : [−1, 1] 	
}
−26<µ<−19,−5<t<−1

. A

period-doubling bifurcation from a 5-cycle to a 10-cycle visible as the
transition from green to magenta occurs in “various” directions.
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A Non-Polynomial Behavior

Theorem (F.-Pilgrim 2019)

The restriction of hR to the (+−+)-bimodal region admits a continuum of
disconnected level sets.

Why “non-polynomial”?
Bicritical rational maps whose fixed points are all repelling are called
essentially non-polynomial-like [Milnor-2000].

The main idea of the proof:
Construct a family of real hyperbolic components consisting of
essentially non-polynomial quadratic rational maps in the
(+−+)-region.



On the real entropy of quadratic rational maps

A Non-Monotonicity Result

A Non-Polynomial Behavior

Theorem (F.-Pilgrim 2019)

The restriction of hR to the (+−+)-bimodal region admits a continuum of
disconnected level sets.

Why “non-polynomial”?
Bicritical rational maps whose fixed points are all repelling are called
essentially non-polynomial-like [Milnor-2000].

The main idea of the proof:
Construct a family of real hyperbolic components consisting of
essentially non-polynomial quadratic rational maps in the
(+−+)-region.



On the real entropy of quadratic rational maps

A Non-Monotonicity Result

A Non-Polynomial Behavior

Theorem (F.-Pilgrim 2019)

The restriction of hR to the (+−+)-bimodal region admits a continuum of
disconnected level sets.

Why “non-polynomial”?
Bicritical rational maps whose fixed points are all repelling are called
essentially non-polynomial-like [Milnor-2000].

The main idea of the proof:
Construct a family of real hyperbolic components consisting of
essentially non-polynomial quadratic rational maps in the
(+−+)-region.


	An Overview
	Entropy in Families of Polynomial Interval Maps
	Transitioning from Polynomials to Rational Maps

	The Entropy Function on the Moduli of Real Rational Maps
	The Moduli Space Md(C)
	The Entropy Function hR:M'd-S'[0,log(d)]

	The Moduli of Real Quadratic Rational Maps
	The Degree Zero Component of the Domain of hR
	Entropy Plots

	A Monotonicity Result
	A Non-Monotonicity Result

